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THE MOTION OF A MATERIAL POINT IN FRIEDMANN-LOBACHEVSKY SPACE* 

L.M. ~ARK~SHOV 

Some simple instances of the motion of a material point in Friedmann- 
Lobachevsky space /l/ are constructed and investigated, on the 
assumption that the space, like Galilean space, is empty (i.e., 
contains no matter) and that the forces acting on the point, including 
the gravitational forces, constitute a factor extraneous to the space. 
Thus, the problem is being considered in the context of a rather 
unusual "relativistic" mechanics, distinct from relativisitc mechanics 
proper. As will be seen later, the difference is quantitatively small 
and can be regulated by slowly varying cosmological factors in the 
pseudo-Euclidean metric of the space of special relativity theory. 

2. Statement of the probtem. We consider a Riemannian space with the metric /I/ 

ds2 = (1 - ~~~)~(c2~t~ - dx= - dyz - dz2) (f.ff 
72 = t2 - r=ic=, r2 z x2 + g + z2, r>o 

where c is the speed of light and o is a cosmological constant. 
V.A. Fock called this space Friedmann-Lobachevsky space. 
Astrophysical observations enable one to calculate the constant and the value of the 

variable quantity 7 for the current epoch /I./, 

a = 6x108years,+ = 6x109 years (1.2) 

The problem considered here is to construct dynamical equations for a material point; 
it is also required to find the most interesting motions of the point: 

a) inertial motions (geodesics of the Riemannian space with metric (1.1); 
b) motions in the field of a central Newtonian force (this is most rationally done by 

describing the evolution of circular orbits). 
The variables x, y, s in the metric (1.1) are assumed to be the Cartesian coordinates of 

the point, and t the time as measured on the clock of a "stationary" observer. 

2. Equations of motion. According to a well-known variational principle, the real motions 
of a material point give the action functional an extremum value. This may mean, in particular, 
that the symmetry group of the equations of motion preserves the Lagrange function. On the 
other hand, by the principle of relativity the equations of motion must be independent of the 
choice of the inertial reference system. Postulating that the transition between inertial 
reference systems is effected by transformations which preserve the metric of the Riemannian 
space (i.e., by the group of motions of this space), we obtain the well-known connection 
between the interval ds and the Lagrange function. With this done, we then obtain the 
equations of motion as the usual Lagrange equations with non-potential forces on the right. 
This very approach is implemented in relativistic dynamics /2/, 

L = &v = h (1 - akc)21/~2 - 1", I'? = X'~ + ~'2 $ 2.2 

The constant factor h must be so chosen that in the limit of classical mechanics, when 
c-00 2*-_,oQ, the Lagrangian becomes (apart from the factor me%) the ordinary kinetic 
energy of the point: L = mf%?. We thus obtain 

(2.1) 

The equations of motion are now obtained as the usual Lagrange equations. We write them 
as a single vector equation: 

(2.2) 

(1 - a/z*y = 0.81 
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Here m is the mass of the point, r is its radius-vector, V is its velocity and F is the 
applied force. 

Eq.(2.2) readily implies the moment theorem relative to the origin: 

The moment theorem is not valid for other points of the space. This selectivity of 
the origin is due to the fact that not all points of the geometrical space are equivalent in 
this mechanical model. The mathematical expression of this fact is that the group of motions 
of the space (1.1) does not contain the translations as a subgroup. 

It follows from formula (2.3) that when there are no impressed forces (F = O), or when 
the impressed forces reduce to a central force directed toward the origin (P x F = O), one 
has a first integral - an analogue of the area integral: 

(1 - a/~)~(1 - (V/C)*)~/~ (r X mV) = 1 = const (2.4) 

This relation clearly shows that the motion of the material point makes place in a plane, 

3. Inertia2 motions of a materia2 point. The equations of free motion of the point (the 
equations of the geodesics) are obtained from (2.2) by setting F = 0 and developing the 
left-hand side of the equation by differentiation: 

(1 - ak) rlVl& = 2cW3 (1 - (Vic)')(r - vt) 

Rewriting this equation in the form 

d (r - Vt)Bldt = -4aW3 (1 - (Vicl')(r - V1)" 

(3.1) 

we readily deduce some properties of the geodesics: 
a) Trajectories passing through the origin are straight lines, and motion along them is 

uniform: r = Vt, V = eonst. 
b) Every trajectory has a certain asymptote 

r--V& =a, V, = limf,,V, a = const. 

It has proved possible to integrate Eq.(3.1) explicitly, in parametric form (where t is 
the parameter): 

That (3.2) is indeed a solution may be verified by direct substitution. 
The process by which (3.1) was integrated consisted of two steps: integration of the one- 

dimensional equation of motion, 

x** = 2Ki-3 (1 - a/T)-'(l - (s'/c)")(z - tz') 5s f (3.3) 

and construction of the full-dimensional solution from this result. 
Both steps made essential use of the symmetry group of Eq.(3.1). Examination of the 

metric (1.1) shows that the group of motions contains the subgroup of four-dimensional complex 
rotations of the Lorentz group, i.e., it differs from the latter in that it does not contain 
the translations of space-time. The equation 

constructed using the operator X of the one-dimensional Lorentz group, extended to the 
derivative z*, has first integrals 

0 1 = rP == t2 - (z/c)?, 0% = (t + x/c)2(c - xy(c f z.) 

The solution of Eq.(3.1) necessarily depends only on the functions ol, OS. 
Considering the equation 



we introduced new variables 

Separation of variables 
thus possible to determine a 
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8, = a@, W, = o,r+, to obtain a first integral of Eq.(3.3): 

(e" - jz)(* - a/r)+(s - $x*)-2 = k" = c0nSt (3.4) 

was now effected in (3.4) by substituting r,zr = Q-r. It was 
parametric representation of the coordinate and time: 

X = c (2kJl (k,*eW) - p-W)), t = (2kJ’ 7 (klee*@) + e-+(+))) 

or (after allowing for the dependence of the arbitrary constant kx on the initial data 30% GJ 

(3.51 

Since the integral q(r) is convergent as r--+ 00, the functions sh$ (%), 0h$ (r) 
are bounded everywhere. The second of formulae (3.5) shows that as z varies over the ray 

1% mr t the variable t also takes all. values from t, to CO. This completeness property of 
the parametric representation (3.5) of the solution is also valid in the full-dimensional 
case. 

In the second step of the solution the one-dimensional notion (3.5) was converted into a 
two-dimensional one, by adding one more equation to (3.5), namely, y = O, and applying a 
composition of two transformations to the resulting set of equations: a Lorentz transformation 
applied to the variables y, t (but not to CCC), and a rotation of the (x,y) plane. 

Introduction of the unit vectors i, j of the coordinate axes x, y and the vectors r, = 
ix0 + jvo, v = ix,' + jy,’ now produced the solution (3.2). When the integral (2.4) exists, this 
solution is the most general one (since all motions of the point are two-dimensional). 

The aforementioned asymptotic properties of the geodesics may be verified directly for 
the exact solution (3.2): 

The non-relativistic approximation to the geodesics may be obtained either directly from 
the exact solution (3.21, or by direct integration of the equations of the geodesics in the 
limit of C-+-00. The result is an explicit function of tine: 

r = bt + gt/(t - a), b = euosb, g = const 

The geodesics turn out to be hyperbolae. Their equations in the plane z=O are: 

gr = A (1 - aA/(x, - aA)), A = g&r - grb, 

;"I = g,z f g,y, Y, = bar - b,y, (b,, b,) = h, (gr, ga) = g 

4. Motion of a matepid point in a centrd field. The equation of motion for the case 
of a central field F, may be reduced, by transforming to polar coordinates r, cp in the plane 
of the motion, to the form 

The area integral is 

Hence it 
approximation 

(1 - c&P(l - (V/C))-+2~' = 1 = const 

follows that the law of motion for a Newtonian field, in the non-relativistic 
(C+m), is 

._g f(‘-~“(l_(~)“i-“mr.] =~(1-+)1/1-(gh- 

mrv,‘a (1 -a/~)” (1 - (V/C)~)-“* -t (I- a/z*)* F, 

d [(l - a/t)%*]/& = 20P (1 - a/t)r + Z2 (1 - cc/t)-“r-“- 

O.HyMP, f%y* (1 - a/t)-" = 1 
(4.1) 

For a material point describing a circular orbit of radius r,, with period of revolution 
T = 2x/o, we have I = 0.8irozo. 

Because of the cosmological correction in the equations of motion, the trajectories of 
the point are open curves and the motion is not steady but slowly evolving. 
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Let us examine the evolution of an originally circular orbit of a material 
space-time model under consideration here. 

Put t = t, + t,, to = 1;* = 6~10~ years. Time will be measured from a time 
responding to the modern era. 

Introduce a small parameter c = l/i,. Then axe x/t, = 0.2, t-I .I= E - $t, . 
first approximation, 1 - cKi :: t1.S + O.lst,. 

point in the 

t, = 0 cor- 

., In the 

We shall find the radius-vector r as an expansion in powers of Y, confining our attention 
to the first approximation I‘ - r0 i- Elr (&). Substitution of r into the first of Eqs.(4.1) 
yields the following equation for Y(&): 

d’s (t,)/dt,’ -I- CA (t,) = -K&,w”t, 

whose general solution is 

2‘ (t,) ~- ii cos (cot, -I- 6) - 0.22r,t,; 6, A -~= const 

Thus, to a first approximation, 

I‘= r* :- E (B C":l (Wi, -2 8) - 0.22. r,il) ('i.2) 

It is evident from this formula that the average variation <Ar> of the magnitude of 
the radius-vector amounts to a systematic decrease (the incidence of the point on the central 
body). The fall. of the point in meters per century is given by the formula 

<sr> 1: -O.37.10-%-, (4.3) 

where rO is the original radius of the circular orbit in kilometers. The magnitude of the 
angular velocity of the radius-vector of the point in the first approximation, calculated 
from the second formula of (4.1), is 

By (4.3), the radius-vector of the point has a positive angular acceleration on the 
average; the magnitude of its additional angular revolution due to this acceleration, in 
angular seconds per century, is 

(-lq> = sis~t,~/g = 24*/T (4.6) 

T is the period of revolution of the point about the central body, expressed in terrestrial 
years. 

To estimate the orders of magnitude produced by computations with formulae (4.3) and 
(4.4), they were applied to the planets of the solar system. This gave the following figures 
for the approach of the moon to the Earth, and of the Earth and Jupiter to the sun, in metres 
per century: 1.1, 550 and 2.7~10~8 respectively. 

The additional angular revolution of Mercury and the Earth about the sun, of the moon 
about the Earth and of Phobus about Mars, turned out to be 43", 0.24", 2.9" and 300" per 
century, respectively. 

These figures (computed with the aid of planetary data taken from 131) are apparently not 
very close to reality, since they take into account only one purely cosmological effect, which 
is derived, moreover, from a model whose physical applicability to problems involving central 
motion of points has not been fully substantiated. 

The author is indebted to V.V. Rumyantsev, V.V. Sergeyev, S.Ya. Stepanov and A-S. Sumbatov, 
who participated in the discussion following a lecture on this topic at a seminar on analytical 
mechanics at Moscow State University. 
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